压铸模具加工手册,压铸模具设计实用教程

日期:2023-03-23 浏览:49

今天给各位分享压铸模具加工手册的知识,其中也会对压铸模具设计实用教程进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录:

  • 1、压铸模具的制作流程与浇排系统设计
  • 2、如何保养压铸模使用寿命
  • 3、铝合金压铸模具制造的工艺流程

压铸模具的制作流程与浇排系统设计

压铸是有色金属成型的一个重要方法之一。压铸件的质量好坏80%取决于压铸模具。制作好压铸模具是产品开发的关键所在。在压铸过程中,由于型腔内的金属液流动状态不同,可能产生冷隔、花纹、气孔、偏析等不良现象。所以控制型腔内的金属液流动状态是相当必要的,而控制型腔内的金属液流动状态,关键在于压铸模具浇排系统的设计。

1 压铸模具的制作流程

上述流程是压铸模具制作的大致流程,但并非一成不变。应在整个制作过程中前后协调,不断反馈与调整各阶段的信息,根据分析结果,修改设计方案,以期取得实效。笔者从事压铸模具开发多年,就模具制作流程中的相关注意事项总结如下,供同行参考。

(1)要对客户来图应进行检证

根据压铸工艺的特性结合有色金属的牌号,先进行毛坯方案设计,然后开始模具设计。对有些不符合压铸工艺的结构,应及时与客户沟通,在征求客户同意的基础上再行修改。日本三大著名摩托车品牌的研发部门都是在开发之初就重点把握图面检证这一关,这样可避免开发损失、减少开发时间。

压铸模具的设计与有色金属的牌号有关。特别是ADC6(JIS标准)铝合金,其浇排系统结构及其拔模斜度与普通铝合金有所不同,应根据其流动性差、压铸温度较高等特点适当应对。日本在高强度的零件上已大量应用ADC6铝合金,而国内应用的较少。ADC6铝合金压铸模具常见的问题有:模具寿命短;脱模阻力大,易变形、拉模,工件顶出易产生裂纹;流动性差,易产生花纹、冷隔;模具突出部位易产生裂纹等,在设计过程中应提前应对。

(2)做好模具的检测

在模具检测阶段,不应单纯检测模具尺寸,更重要的是应检测压铸产品质量。压铸产品质量检测可分外观检测、内部品质检测及机械性能检测。检测的数据应符合压铸产品的合格率要求、内部品质标准及机械性能指标。

(3)做好试模

试模阶段是验证模具的关键阶段,通常初次试模后还要进行修模,修模时针对不良项目逐二进行改善,直至符合客户要求。

2 压铸模具浇排系统的设计

在压铸模具浇排系统中,浇口位置、浇道形状是控制溶液的流动状态和填充方向的重要因素。首先应着眼于浇口位置、浇道形状,合理设计浇口、浇道、集渣包、溢流槽及排气道;然后使用CAE软件对型腔内部的溶液流动状态进行解析。

2.1浇口设计步骤

内浇道及内浇口的位置与尺寸,对于填充方式有决定性的影响。内浇口设计方法很关键。成品设置浇口时,通常按下列步骤进行:

(1)计算内浇口截面积。浇口断面积计算公式:

(2)根据内浇口截面积,设定浇口形状,然后设置浇口位置,初步设计溢流槽及集渣包位置。

(3)制作不同的浇口方案(通常先使内浇道截面积小一些,试验后根据需要可再扩大),并制成3D数据。

(4)根据制成的3D数据进行CAE分析(即流态解析、温度场分析)。

(5)对解析结果进行评价。

(6)对不同浇排系统所产生的方案结果进行比较、评价,择优选用。若存在不良现象,应进行方案改进,然后再进行CAE分析,直到取得较满意的方案。

2.2浇道、排气系统的设计注意事项

(1)内浇口及排气槽应设置在使金属液在形

腔里流动状态最好,并能充满型腔内各个角落的位置上。设置时尽可能采用一个内浇口。如果设计条件不允许,应注意使金属液的流动相互不受干扰或在型腔内不分散地相遇(即引导金属流顺一个方向流动),避免型腔内各股金属液汇合时出现涡流。例如,当压铸件尺寸较大时,有时不可能仅从一个内浇道获得所需的内浇道截面积,因此必须采用多个内浇道。但是应注意到内浇道的设置应保证引导金属液只沿着一个方向流动,以避免型腔内各股金属液汇合而出现涡流。

(2)金属液流柬应尽可能少地在型腔内转弯,以便使金属液能达到压铸件的厚壁部位。

(3)金属液流程应尽可能短而均匀。

(4)内浇道截面积向着内浇道方向逐渐缩小,以减少气体卷入,有利于提高压铸件的致密性。

(5)内浇道在流动过程中应圆滑过渡,尽可能避免急转与流动冲击。

(6)多腔时对浇道截面积应按各腔容积比进

行分段减少。

(7)型腔中的空气和润滑剂挥发的气体,应由流入的金属液推到排气槽处,然后从排气槽处逸出型腔。特别是金属液的流动不应将气体留在盲孔内或过早地堵塞排气槽。

(8)金属流束不应在散热不良处形成热冲击。

(9)对带有筋的压铸件,应尽可能地让金属流顺筋的方向流动。

(10)应避免金属液直接冲刷容易损坏的模具部分和型芯。不可避免时,应在内浇道上设置隔离带,避免热冲击。

(11)通常内浇道愈宽愈厚,非均匀流动的危险也愈大。应尽量不要采用过厚的内浇口,避免切除内浇道时产生变形。

(12)型腔的排气

溢流槽是为了排除铸造时最初喷入的金属液,并且使模具的温度一致。溢流槽设在铸型容易存气的位置,作为排出气体用,改善金属液的流动状态,将金属液导向型腔的各个角落,以得到良好的铸造表面。排气槽有连接在溢流槽与集渣包前面的,也有与型腔直接连接的。设计时应注意:

①排气槽的总截面积应大致相当于内浇道截面积。

②分型面上的排气槽的位置是根据型腔内金属液流动状态而确定的。排气槽最好设计成弯曲状,而不是直通状,以防止金属液外喷伤人。分型面上的排气槽的深度通常为0.05~0.15mm;位于型腔内的排气槽深度通常为0.3~0.5mm;位于模具边缘的排气槽深度通常为0.1~0.15mm。排气槽的宽度一般为5~20mm。

③顶针与推杆的排气间隙对于型腔的排气是非常重要的。通常控制在0.0l~0.02mm,或放大到不产生毛刺为止。

④固定式型芯的排气也是一有效的排气方法,案例如图2所示。通常在型芯周边单边控制有0.05~0.10mm的间隙,并在型芯定位颈部开出宽、厚各l~1.5mm的排气槽,这样型腔内的气体可顺颈部开出的排气槽由型腔底部排出。

⑤排气槽的粗糙度也不应忽视,应保持较高的光洁度,避免在使用过程中被涂料粘连脏物而造成堵塞,影响排气。

(13)压铸熔杯的`填充率尽可能选高些。对压铸件气孔度要求高的场合,通常选定在70%左右,这样带入压铸件的气体就会大幅度减少,对系统排气也是有利的。

2.3流动解析评价与对策

(1)模具设计过程中,应尽可能让金属流顺一个方向流动,流动解析后,发现型腔中出现涡流时,应当改变内浇口导入角或改变尺寸,以排除涡流现象。

(2)金属液交汇时,在停止流动前还要让金属液继续流动一段距离。所以在交汇处的型腔外应增设溢流槽和集渣包,以使过冷的金属液及空气化合物流入溢流槽和集渣包,让后续金属液清洁、常温。

(3)针对不同部位填充速度不一时,应调整内浇口的厚度或宽度(必要时逐渐加大),达到填充速度基本一致的目的,但应尽可能通过加宽内浇道来实现。

(4)流动解析后发现填充滞后的部位,也可增设内浇道。

(5)对于薄壁压铸件,必须选用较短的填充时间进行压铸。所以应通过加大内浇道的截面积来减少填充时间,以达到较好的表面质量。

(6)对于致密性要求高的厚壁压铸件,必须保证有效地进行排气。应选用中等的填充时间进行压铸。故应对内浇道的截面进行调整,以取得相应的填充时间,获得较好的表面质量和内部质量。

3 结 论

压铸模具的制作流程是一个CAD/CAE/CAM/CAT融合的过程,其间融合得越好,压铸件产品的品质越高、制造成本就越低。压铸模具浇排系统设计应遵循上述设计步骤和注意事项,并进行分析和评价,将避免许多不良现象产生。在当今具备CAE分析手段的时代,在内浇道设计初期,将总结出的经验先行考虑进浇排系统,结合CAE手段,通过分析、改善、提升,势必起到事半功倍的作用。

如何保养压铸模使用寿命

如何保养压铸模使用寿命压铸模由于生产周期长、投资大、制造精度高,故造价高,因此希望模具有较高的使用寿命。但由于材料、机械加工等一系列内外因素的影响,导致模具过早失效而报废,造成极大的浪费。压铸模失效形式主要有:尖角、拐角处开裂、劈裂、热裂纹(龟裂)、磨损、冲蚀等。造成压铸模失效的主要原因有:材料自身存在的缺陷、加工、使用、维修以及热处理的问题。一、材料自身存在的缺陷众所周知,压铸模的使用条件极为恶劣。以铝压铸模为例,铝的熔点为580-740℃,使用时,铝液温度控制在650-720℃。在不对模具预热的情况下压铸,型腔表面温度由室温直升至液温,型腔表面承受极大的拉应力。开模顶件时,型腔表面承受极大的压应力。数千次的压铸后,模具表面便产生龟裂等缺陷。由此可见,压铸使用条件属急热急冷。模具材料应选用冷热疲劳抗力、断裂韧性、热稳定性高的热作模具钢。H13(4Cr5MoV1Si)是目前应用较广泛的材料,据介绍,国外80%的型腔均采用H13,现在国内仍大量使用3Cr2W8V,但3Cr2W8VT_艺性能不好,导热性很差,线膨胀系数高,工作中产生很大热应力,导致模具产生龟裂甚至破裂,并且加热时易脱碳,降低模具抗磨损性能,因此属于淘汰钢种。马氏体时效钢适用于耐热裂而对耐磨性和耐蚀性要求不高的模具。钨钼等耐热合金仅限于热裂和腐蚀较严重的小型镶块,虽然这些合金即脆又有缺口敏感性,但其优点是有良好的导热性,对需要冷却而又不能设置水道的厚压铸件压铸模有良好的适应性。因此,在合理的热处理与生产管理下,H13仍具有满意的使用性能。制造压铸模的材料,无论从哪一方面都应符合设计要求,保证压铸模在其正常的使用条件下达到设计使用寿命。因此,在投入生产之前,应对材料进行一系列检查,以防带缺陷材料,造成模具早期报废和加工费用的浪费。常用检查手段有宏观腐蚀检查、金相检查、超声波检查。

(1)宏观腐蚀检查。主要检查材料的多孔性、偏析、龟裂、裂纹、非金属夹杂以及表面的锤裂、接缝。

(2)金相检查。主要检查材料晶界上碳化物的偏析、分布状态、晶料度以及晶粒间夹杂等。

(3)超声波检查。主要检查材料内部的缺陷和大小。二、压铸模的加工、使用、维修和保养模具设计手册中已详细介绍了压铸模设计中应注意的问题,但在确定压射速度时,最大速度应不超过100m/S。速度太高,促使模具腐蚀及型腔和型芯上沉积物增多;但过低易使铸件产生缺陷。因此对于镁、铝、锌相应的最低压射速度为27、18、12m/s,铸铝的最大压射速度不应超过53m/s,平均压射速度为43m/s。在加工过程中,较厚的模板不能用叠加的方法保证其厚度。因为钢板厚1倍,弯曲变形量减少85%,叠层只能起叠加作用。厚度与单板相同的2块板弯曲变形量是单板的4倍。另外在加工冷却水道时,两面加工中应特别注意保证同心度。如果头部拐角,又不相互同心,那么在使用过程中,连接的拐角处就会开裂。冷却系统的表面应当光滑,最好不留机加工痕迹。电火花加工在模具型腔加工中应用越来越广泛,但加工后的型腔表面留有淬硬层。这是由于加工中,模具表面自行渗碳淬火造成的。淬硬层厚度由加工时电流强度和频率决定,粗加工时较深,精加工时较浅。无论深浅,模具表面均有极大应力。若不清除淬硬层或消除应力,在使用过程中,模具表面就会产生龟裂、点蚀和开裂。消除淬硬层或去应力可用:①用油石或研磨去除淬硬层;②在不降低硬度的情况下,低于回火温度下去应力,这样可大幅度降低模腔表面应力。模具在使用过程中应严格控制铸造工艺流程。在工艺许可范围内,尽量降低铝液的烧铸温度,压射速度,提高模具预热温度。铝压铸模的预热温度由100~130℃提高至180~200℃,模具寿命可大幅度提高。焊接修复是模具修复中一种常用手段。在焊接前,应先掌握所焊接模具刚型号。

铝合金压铸模具制造的工艺流程

压铸模具制作工艺流程

压铸模具制作工艺流程:

审图—备料—加工—模架加工—模芯加工—电极加工—模具零件加工—检验—装配—飞模—试模—生产

A:模架加工:1打编号,2 A/B板加工,3面板加工,4顶针固定板加工,5底板加工

B:模芯加工:1飞边,2粗磨,3铣床加工,4钳工加工,5CNC粗加工,6热处理,7精磨,8CNC精加工,9电火花加工,10省模

C:模具零件加工:1滑块加工,2压紧块加工,3分流锥浇口套加工,4镶件加工

模架加工细节

1, 打编号要统一,模芯也要打上编号,应与模架上编号一致并且方向一致,装配时对准即可不易出错。

2, A/B板加工(即动定模框加工),a:A/B板加工应保证模框的平行度和垂直度为0.02mm,b :铣床加工:螺丝孔,运水孔,顶针孔,机咀孔,倒角c:钳工加工:攻牙,修毛边。

3, 面板加工:铣床加工镗机咀孔或加工料嘴孔。

4, 顶针固定板加工:铣床加工:顶针板与B板用回针连结,B板面向上,由上而下钻顶针孔,顶针沉头需把顶针板反过来底部向上,校正,先用钻头粗加工,再用铣刀精加工到位,倒角。

5, 底板加工 :铣床加工:划线,校正,镗孔,倒角。

(注:有些模具需强拉强顶的要加做强拉强顶机构,如在顶针板上加钻螺丝孔)

模芯加工细节

1) 粗加工飞六边:在铣床上加工,保证垂直度和平行度,留磨余量1.2mm

2) 粗磨:大水磨加工,先磨大面,用批司夹紧磨小面,保证垂直度和平行度在0.05mm,留余量双边0.6-0.8mm

3) 铣床加工:先将铣床机头校正,保证在0.02mm之内,校正压紧工件,先加工螺丝孔,顶针孔,穿丝孔,镶针沉头开粗,机咀或料咀孔,分流锥孔倒角再做运水孔,铣R角。

4) 钳工加工:攻牙,打字码

5) CNC粗加工

6) 发外热处理HRC48-52

7) 精磨;大水磨加工至比模框负0.04mm,保证平行度和垂直度在0.02mm之内

8) CNC精加工

9) 电火花加工

10) 省模,保证光洁度,控制好型腔尺寸。

11) 加工进浇口,排气,锌合金一般情况下浇口开0.3-0.5mm,排气开0.06-0.1mm,铝合金浇口开0.5-1.2mm排气开0.1-0.2,塑胶排气开0.01-0.02,尽量宽一点,薄一点。

滑块加工工艺

1, 首先铣床粗加工六面,2精磨六面到尺寸要求,3铣床粗加工挂台,4挂台精磨到尺寸要求并与模架行位滑配,5铣床加工斜面,保证斜度与压紧块一致,留余量飞模,6钻运水和斜导住孔,斜导柱孔比导柱大1毫米,并倒角,斜导柱孔斜度应比滑块斜面斜度小2度。斜导柱孔也可以在飞好模合上模后与模架一起再加工,根据不同的情况而定。

关于压铸模具加工手册和压铸模具设计实用教程的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。